

dkey package documentation

This module provides a thin wrapper that can be used to set certain keys in dictionaries as deprecated.
This allows e.g. for an easy way to gently push out interface changes instead of just introducing breaking
changes without any prior warnings.

Installation

To install this package simply use pip.

pip install dkey

Usage example

Removing a key

Let’s say we have the following function that returns a dict:

def customer_info():
 return {
 'name': 'Smith',
 'age': 24,
 'cleartext password': 'password'
 }

And the following code that uses our function:

def my_func():
 customer = customer_info()
 print(customer['cleartext password'])

Now we want to remove the ‘cleartext password’ from our returned dict due to security concerns.
However, we want to give others time to adapt to our changes, so instead of just removing it,
we deprecate the usage of that dict entry:

from dkey import deprecate_keys, dkey

def customer_info():
 return deprecate_keys({
 'name': 'Smith',
 'age': 24,
 'cleartext password': 'password'
 },
 dkey('cleartext password'))

We use the function deprecate_keys to deprecate the key ‘cleartext password’. To pass the
key to deprecate_keys we use the convenience function dkey. Now if we call my_func again:

def my_func():
 customer = customer_info()
 print(customer['cleartext password'])
 # Wil warn with a DeprecationWarning: Key `cleartext password` is deprecated. It shouldn't be used anymore.

As you can see an automatically generated deprecation warning is used.

Replacing a key

Another scenario you might run into is that you want to rename a key (for various reasons), and again
you want to give people time to adapt. For this you can do the following:

from dkey import deprecate_keys, dkey

def customer_info():
 return deprecate_keys({
 'first name': 'Adam',
 'last name': 'Smith',
 'age': 24,
 },
 dkey('name', 'last name'))

Again we use the deprecate_keys function. This time we pass two keys to dkey.dkey. The old
key and the new key people should be using. The result is:

def my_func():
 customer = customer_info()
 print(customer['name'])
 # Wil raise a DeprecationWarning: Key `name` is deprecated. Use `first name` from now on.

And again an automatically generated deprecation warning is used that also informs the developers
about which key to use instead.

More configuration options

If you have a well organised code project, you will normally also want to communicate since when a feature is
deprecated and when it will get removed completely. Maybe you also want to give more detailed information about
the changes than what the default message offers. You can pass those details to dkey.dkey:

from dkey import deprecate_keys, dkey

def customer_info():
 return deprecate_keys({
 'first name': 'Adam',
 'last name': 'Smith',
 'age': 24,
 },
 dkey('name', 'last name', deprecated_in='1.1.12', removed_in='2.0.0',
 details='`name` has been replaced by the two fields `first name` and `last name`.'))

Which will result in the warning:

Key name is deprecated since version 1.1.12. It will be removed in version 2.0.0.
name has been replaced by the two fields first name and last name.

By default, a DeprecationWarning [https://docs.python.org/3/library/exceptions.html#DeprecationWarning] is used. This warning does not appear for end users. If you have
deprecation warnings that are actually meant for end users and not just for developers, you can change
the warning type:

from dkey import deprecate_keys, dkey

def customer_info():
 return deprecate_keys({
 'name': 'Smith',
 'age': 24,
 'cleartext password': 'password'
 },
 dkey('cleartext password', warning_type='end user'))

Which results in:

def my_func():
 customer = customer_info()
 print(customer['cleartext password'])
 # Wil raise a FutureWarning: Key `cleartext password` is deprecated. It shouldn't be used anymore.

FutureWarning [https://docs.python.org/3/library/exceptions.html#FutureWarning] is a warning type that is shown to end users by default. If you want to show
your own warning type, this is also possible. Just hand your warning type to warning_type instead of
the string ‘end user’ and it will be used to spawn the warning.

Note

In order for your custom warning type to work it has to be compatible with the warnings.warn [https://docs.python.org/3/library/warnings.html#warnings.warn]
function.

Limitations

	Currently, only key access can be checked and deprecation warnings are shown. There are no warnings
for changes in the number of entries in the dict.

	Furthermore, no automatic doc-string adaptations are possible as of now

Module documentation

	
class dkey.deprecate_keys(dictionary, *args)

	Wrapper for dicts that allows to set certain keys as deprecated.

	
dictionary

	dict – The dictionary to wrap

	
*args

	Zero or more keys that should show deprecation warnings.
Use dkey.dkey for each key.

	Warns

	ArbitraryWarning – If a deprecated key is used, shows a warning
that was set for this key. (see also dkey.dkey)

	
dkey.dkey(*args, deprecated_in=None, removed_in=None, details=None, warning_type='developer')

	Function that converts a key into a deprecation lookup dict.

To use the dkey.deprecate_keys function it is easiest to generate
its input with this function. This function generates:

	A key removed deprecation warning object if one key is provided

	A key replaced deprecation warning object if two keys are provided

	Parameters

	
	*args – One or two keys. If one key is passed, it is assumed that this
key will be removed in the future. If two keys are passed, it is
assumed that the second key is the replacement for the first one.

	deprecated_in (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Version in which this key was deprecated. If given, will appear in the
warning message.

	removed_in (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Version in which this key will be removed and will no longer work. If given,
will appear in the warning message.

	details (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Will remove the default final sentence (do no longer use, or use xxx from now on).

	warning_type ({'developer', 'end user', ArbitraryWarning}, optional) – The warning type to use when the old key is accessed

By default, deprecation warnings are intended for developers only which
means a any:DeprecationWarning is used which isn’t shown to end users.
If it should be shown to end users, this can be done by passing ‘end user’
which will raise FutureWarning [https://docs.python.org/3/library/exceptions.html#FutureWarning]. If you want to use your custom warning
type this is also possible.

Note

Your custom warning must work with warnings.warn [https://docs.python.org/3/library/warnings.html#warnings.warn]

	Returns

	A dict that can be used as a deprecated key input for dkey.deprecate_keys.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If zero or more than two keys are passed to this function.

 Python Module Index

 d

 		 	

 		
 d	

 	
 	
 dkey	

Index

 D

D

 	
 	deprecate_keys (class in dkey)

 	dictionary (dkey.deprecate_keys attribute)

 	
 	dkey (module)

 	dkey() (in module dkey)

 nav.xhtml

 Table of Contents

 		
 dkey package documentation

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

