
dkey
Release heads/master

Jan 18, 2019

Contents:

1 Installation 3

2 Usage example 5
2.1 Removing a key . 5
2.2 Replacing a key . 6
2.3 More configuration options . 6

3 Limitations 9

4 Module documentation 11

Python Module Index 13

i

ii

dkey, Release heads/master

This module provides a thin wrapper that can be used to set certain keys in dictionaries as deprecated. This allows e.g.
for an easy way to gently push out interface changes instead of just introducing breaking changes without any prior
warnings.

Contents: 1

dkey, Release heads/master

2 Contents:

CHAPTER 1

Installation

To install this package simply use pip.

pip install dkey

3

dkey, Release heads/master

4 Chapter 1. Installation

CHAPTER 2

Usage example

2.1 Removing a key

Let’s say we have the following function that returns a dict:

def customer_info():
return {

'name': 'Smith',
'age': 24,
'cleartext password': 'password'

}

And the following code that uses our function:

def my_func():
customer = customer_info()
print(customer['cleartext password'])

Now we want to remove the ‘cleartext password’ from our returned dict due to security concerns. However, we want
to give others time to adapt to our changes, so instead of just removing it, we deprecate the usage of that dict entry:

from dkey import deprecate_keys, dkey

def customer_info():
return deprecate_keys({

'name': 'Smith',
'age': 24,
'cleartext password': 'password'

},
dkey('cleartext password'))

We use the function deprecate_keys to deprecate the key ‘cleartext password’. To pass the key to
deprecate_keys we use the convenience function dkey . Now if we call my_func again:

5

dkey, Release heads/master

def my_func():
customer = customer_info()
print(customer['cleartext password'])
Wil warn with a DeprecationWarning: Key `cleartext password` is deprecated. It

→˓shouldn't be used anymore.

As you can see an automatically generated deprecation warning is used.

2.2 Replacing a key

Another scenario you might run into is that you want to rename a key (for various reasons), and again you want to give
people time to adapt. For this you can do the following:

from dkey import deprecate_keys, dkey

def customer_info():
return deprecate_keys({

'first name': 'Adam',
'last name': 'Smith',
'age': 24,

},
dkey('name', 'last name'))

Again we use the deprecate_keys function. This time we pass two keys to dkey.dkey . The old key and the
new key people should be using. The result is:

def my_func():
customer = customer_info()
print(customer['name'])
Wil raise a DeprecationWarning: Key `name` is deprecated. Use `first name` from

→˓now on.

And again an automatically generated deprecation warning is used that also informs the developers about which key
to use instead.

2.3 More configuration options

If you have a well organised code project, you will normally also want to communicate since when a feature is
deprecated and when it will get removed completely. Maybe you also want to give more detailed information about
the changes than what the default message offers. You can pass those details to dkey.dkey:

from dkey import deprecate_keys, dkey

def customer_info():
return deprecate_keys({

'first name': 'Adam',
'last name': 'Smith',
'age': 24,

},
dkey('name', 'last name', deprecated_in='1.1.12', removed_in='2.0.0',

details='`name` has been replaced by the two fields `first name` and
→˓`last name`.'))

6 Chapter 2. Usage example

dkey, Release heads/master

Which will result in the warning:

Key name is deprecated since version 1.1.12. It will be removed in version 2.0.0. name has been replaced
by the two fields first name and last name.

By default, a DeprecationWarning is used. This warning does not appear for end users. If you have deprecation
warnings that are actually meant for end users and not just for developers, you can change the warning type:

from dkey import deprecate_keys, dkey

def customer_info():
return deprecate_keys({

'name': 'Smith',
'age': 24,
'cleartext password': 'password'

},
dkey('cleartext password', warning_type='end user'))

Which results in:

def my_func():
customer = customer_info()
print(customer['cleartext password'])
Wil raise a FutureWarning: Key `cleartext password` is deprecated. It shouldn't

→˓be used anymore.

FutureWarning is a warning type that is shown to end users by default. If you want to show your own warning
type, this is also possible. Just hand your warning type to warning_type instead of the string ‘end user’ and it will be
used to spawn the warning.

Note: In order for your custom warning type to work it has to be compatible with the warnings.warn function.

2.3. More configuration options 7

https://docs.python.org/3/library/exceptions.html#DeprecationWarning
https://docs.python.org/3/library/exceptions.html#FutureWarning
https://docs.python.org/3/library/warnings.html#warnings.warn

dkey, Release heads/master

8 Chapter 2. Usage example

CHAPTER 3

Limitations

• Currently, only key access can be checked and deprecation warnings are shown. There are no warnings for
changes in the number of entries in the dict.

• Furthermore, no automatic doc-string adaptations are possible as of now

9

dkey, Release heads/master

10 Chapter 3. Limitations

CHAPTER 4

Module documentation

class dkey.deprecate_keys(dictionary, *args)
Wrapper for dicts that allows to set certain keys as deprecated.

dictionary
dict – The dictionary to wrap

*args
Zero or more keys that should show deprecation warnings. Use dkey.dkey for each key.

Warns ArbitraryWarning – If a deprecated key is used, shows a warning that was set for this key.
(see also dkey.dkey)

dkey.dkey(*args, deprecated_in=None, removed_in=None, details=None, warning_type=’developer’)
Function that converts a key into a deprecation lookup dict.

To use the dkey.deprecate_keys function it is easiest to generate its input with this function. This function
generates:

• A key removed deprecation warning object if one key is provided

• A key replaced deprecation warning object if two keys are provided

Parameters

• *args – One or two keys. If one key is passed, it is assumed that this key will be removed
in the future. If two keys are passed, it is assumed that the second key is the replacement for
the first one.

• deprecated_in (str, optional) – Version in which this key was deprecated. If
given, will appear in the warning message.

• removed_in (str, optional) – Version in which this key will be removed and will
no longer work. If given, will appear in the warning message.

• details (str, optional) – Will remove the default final sentence (do no longer use,
or use xxx from now on).

11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

dkey, Release heads/master

• warning_type ({'developer', 'end user', ArbitraryWarning},
optional) – The warning type to use when the old key is accessed

By default, deprecation warnings are intended for developers only which means a
any:DeprecationWarning is used which isn’t shown to end users. If it should be shown
to end users, this can be done by passing ‘end user’ which will raise FutureWarning. If
you want to use your custom warning type this is also possible.

Note: Your custom warning must work with warnings.warn

Returns A dict that can be used as a deprecated key input for dkey.deprecate_keys.

Return type dict

Raises ValueError – If zero or more than two keys are passed to this function.

12 Chapter 4. Module documentation

https://docs.python.org/3/library/exceptions.html#FutureWarning
https://docs.python.org/3/library/warnings.html#warnings.warn
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError

Python Module Index

d
dkey, 1

13

dkey, Release heads/master

14 Python Module Index

Index

D
deprecate_keys (class in dkey), 11
dictionary (dkey.deprecate_keys attribute), 11
dkey (module), 1
dkey() (in module dkey), 11

15

	Installation
	Usage example
	Removing a key
	Replacing a key
	More configuration options

	Limitations
	Module documentation
	Python Module Index

